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Topics addressed

Cooperative guidance of �eets of autonomous vehicles

Global �eet objective, more e�cient than sum of individual missions

Cheaper individual vehicles with complementary sensors

Decentralized implementation : reduced communication, robustness
to vehicle loss, no supervisor

Safety issues : collisions between vehicles and with obstacles

Model Predicive Control (MPC) - interest and challenges

Takes into account nonlinear vehicle models and constraints

Same framework with multiple criteria for various missions

Should be adapted to embedded implementation

Experiments on mobile and aerial vehicles

Main goal of this talk

Challenging cooperative problems and possible solutions using MPC
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Applications

Waypoint navigation

Formation �ight
Grid allocation for exploration

Autonomous trajectory de�nition

Virtual structure formation �ight
Area exploration with dynamic
assignment of exit targets
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Distributed Model Predictive Control

Dynamical models

For each vehicle i , xi (k + 1) = fi (xi (k) ,ui (k))

Future trajectories

Xi (k) =


xi (k + 1)
xi (k + 2)

...
xi (k + Hp)

 and Ui (k) =


ui (k),

ui (k + 1),
...

ui(k + Hc − 1)


Hc control horizon, Hp prediction horizon

Cost function over future trajectories

Ji (Ui (k),Xi (k)) =

Hp∑
t=k+1

ϕi (xi (t),ui (t − 1), t) + Φi (xi (t + Hp))
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Distributed Model Predictive Control

Optimisation under constraints

Find U∗
i = argmin Ji (Ui (k),Xi (k))

over Ui ∈ UHc

i

subject to ∀t ∈ [k + 1; k + Hp],
xi (t) ∈ Xi , xi (t + 1) = fi (xi (t) ,ui (t))

Principle

At each timestep, apply the �rst input of U∗
i and iterate

Advantages
- includes knowledge of system dynamics and predictions
- natively handles constraints on input and state

Di�culties
- de�nition of cost function Ji
- solve a costly optimization problem at each timestep

Simplifying assumptions : identical vehicles, no communication delays
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Typical vehicle model

2D dynamical model (straightforward 3D extension)

xi = (xi , yi , vi , χi )
T

and ui = (uωi , u
v
i )T

(x , y) position, v speed, χ orientation,

(uω, uv ) angular and linear accelerations

xi (k + 1) = f (xi (k),ui (k)) and (xi ,ui ) ∈ Xi × Ui such that
xi (k + 1) = xi (k) + ∆t.vi (k) cosχi (k)
yi (k + 1) = yi (k) + ∆t.vi (k) sinχi (k)
vi (k + 1) = vi (k) + ∆t.uvi (k)
χi (k + 1) = χi (k) + ∆t.uωi (k)

vmin ≤ vi ≤ vmax −ωmax ≤ ωi ≤ ωmax

−∆vmax ≤ uvi ≤ ∆vmax −∆ωmax ≤ uωi ≤ ∆ωmax

Trigonometric nonlinearity, either on the state or on the input space
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Basic costs for autonomous vehicle guidance

Lagrangian with mission and penalized constraint costs

Ji (k) = Jnavi (k) + J
safety
i (k) + Jui (k)

Weights W • for normalization and setting relative priorities

Control cost Jui =
k+Hc∑
n=k+1

W u,ωuωi (n)2 + W u,vuvi (n)2

Navigation cost Jnavi = J
nav ,direct
i + J

nav ,�eet
i

Given a waypoint pp and predicted robot position p̂i (n|k),

prefi,p (n|k) = pi (k) + (n − k) ∆t vi
pi (k)− pp
‖pi (k)− pp‖

J
nav ,direct
i = W nd

k+Hp∑
n=k+1

∥∥p̂i (n|k)− prefi,p (n|k)
∥∥
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Attraction / repulsion costs

Navigation cost (continued)

J
nav,�eet
i = W

nv
N∑
j=1
j 6=i

k+Hp∑
n=k+1

1+ tanh
(
αf
ij

(
dij (n|k)− βf

ij

))
2

Safety cost Jsafetyi = J
safe,veh
i (k) + J

safe,obs
i (k)

J
safe,veh
i = W

sv
N∑
j=1
j 6=i

k+Hp∑
n=k+1

1− tanh
(
αv
ij

(
dij (n|k)− βv

ij

))
2

(N vehicles)

J
safe,obs
i = W

so
No∑
o=1

k+Hp∑
n=k+1

1− tanh (αo
io (dio (n|k)− βo

io))

2
(No obstacles)
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The delicate question of weighting

Multi-objective optimization problem under constraints, such that

constraints on inputs only ⇒ natively taken into account

constraints on state ⇒ penalization costs

weighted sums of sub-costs

How to determine weights without too much ad-hoc tuning ?

normalize sub-costs between 0 and 1

choose weights such that penalization terms are the largest ones in
constraint regions

navigation vs control sollicitation = classical LQ trade-o�
between tracking and energy consumption
collision vs other costs = several orders of magniture di�erence,
such that safety is the only signi�cant cost in de�ned regions
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Illustration of basic costs

ddes = 6, dsafe = 4 ddes = 8, dsafe = 4
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Computational issues

MPC guidance problems involve nonconvex and multimodal cost
functions on constrained input spaces

How to compute the (sub)optimal cost during one timestep ?
⇒ Methods sorted by increasing computation time

Discretization (�xed computation time)

deterministic grid
random search

Local search : gradient descent and variants

Global search : large choice of expensive optimizers

No free lunch ! We usually choose :

Deterministic grid on architectures with low computational resources

Global optimizers on more powerful embedded computers
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Discretized search

Heuristic rules

De�ne a set of control candidates such that

null and extremal control inputs are included
candidates are distributed over the entire control space with
increased density around null control input
same control input value on the entire control horizon

Predict cost value for each candidate trajectory and select the best

Example in the 2D space :

Sω =

{
2πp

ηω

}
, p = 1 . . . ηω

Sv =

{
∆vmax

(ηv )p

}
, p = 0 . . . ηv

S = {Sv × Sω} ∪ {0, 0}
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Discretized search - illustration
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Global optimizer : DIRECT (DIviding RECTangles)

Lipschitzian optimization (without knowledge of the Lipschitz constant)

Matlab and C++ versions
Very e�cient implementation in Python package nlopt
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Guidance toward prede�ned objectives

Application of MPC �eet costs to realistic 3D quadrotor models

Discretized search approach
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Cooperative waypoint grid allocation for exploration

Navigation cost modi�ed to take into account 2 successive
waypoints

Consensus procedure based on this cost, computed from each
vehicle to the nearest candidate successive waypoints
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Virtual structure approach for formation �ight

Three main approaches for formation �ying control

Leader following (Wang 1991, Desai 1998, Jadbabaie 2003):
One agent is de�ned as more important than the others. The others
will be dependent of the leader.

Behaviour rules (Parker 1998, 2012, Balch 1998):
The agents must follow some rules depending on the environment
and the mission: approach described so far.

Virtual structure (Lewis 1996, Barnes 2009, Bacon 2012, Ren

2004):
A virtual link is de�ned to move the agents together. The virtual
structure can be �xed or evolve depending on the environment.
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Virtual structure approach for formation �ight

Formation control by restraining the UAVs inside an area

Double layer control:

Higher layer: Virtual structure control

Reach the �nal destination of the �eet
Collision avoidance with obstacles by shaping the ellipse

Lower layer: decentralized UAV control

Reach the area
Repartition within the area
Collision avoidance between agents
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Virtual structure : higher layer

Ellipse of center pc = [xc yc ] and characteristic matrix M
De�ned for every point of the space p = [x y ] as:

(p− pc)TM−1(p− pc) ≤ 1

Characteristic matrix M :

M =

[
cos θ − sin θ
sin θ cos θ

] [
a2 0
0 b2

] [
cos θ − sin θ
sin θ cos θ

]T
θ: angle between the long axis
and the horizontal
a : length of the long axis of
the ellipse
b : length of the short axis of
the ellipse
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Virtual structure : higher layer

Search for the inputs such that:

ûθ, ûa, ûb, ûv , ûα = arg min
uv , uα,

uθ, ua, ub,

Jz

where
Jz = Jtarget + Jv + Jab + Jc .

The components of Jz are designed such that

Jtarget drives the ellipse to its target;

Jc modi�es the matrix M to avoid obstacles.

Jv keeps the ellipse area close to the initial one, A;
Jab keeps a and b close to their initial values a0 and b0;
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Virtual structure : higher layer

Collision avoidance with obstacles

Jc = wc

HP∑
k=1

NbO∑
l=1

HP − k

HP
.Ainter

l,t+k

Computation of the area of intersection

x
O

y

pc

ObstacleAinter
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Virtual structure : lower layer

UAV control

Search the inputs of each agent i such that:

uvi , u
ω
i = argmin Jdi (1)

where
Jdi = Jti + Jsafei + Jn1i + Jn2i + Jui (2)

The components of Jd are designed such that

Jti drives the UAV inside the area;

Jsafei modi�es the direction and the speed to avoid collision with
other UAVs;

Jn1i keeps the speed of the UAV close to a chosen value;

Jn2i keeps the orientation of the UAV close to the one of the
structure;

Jui minimizes the energy consumption in terms of control inputs.
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Virtual structure : lower layer

Attraction of the UAVs toward the center of the area :

Jti = wt

∑
k=1

(HP − k)

HP
gk(i),

Potential �eld in the area gk(i) derived from the Mahalanobis distance.

dMahala(p) =
√

(p− pc)TM(p− pc)

ICODE Seminar - J. Marzat - 12/06/2015 - 26/41



Virtual structure - simulation results

HPzone =30, HCzone =5, ainitial =200, binitial =100, αellipse =π
2
, v0 =4
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Area exploration with dynamic target assignment

Entry zone zone

exit targets

Sensor footprint

nv vehicles and nc exit locations

2 objectives to ful�ll:

Online trajectory planning that
favour exploration
Online reassignment of targets

Constraints:

Constrained dynamics
Collision avoidance
Fixed mission time
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Area exploration with dynamic target assignment

Exploration reward: we want to maximize Ω =
⋃

t=1..tf
i=1..nv

Dt
i

Exploration grid
sensor footprint

dgrid

rsensor

Discrete representation:
Matrix G represents the level of
exploration of a cell, Gkl ∈ [0, 1].
When a vehicle comes at distance
d of Gkl , the exploration level
obtained is given by fexplore

fexplore(d) =

{
0 si d ≥ rsensor

1
2

(
1+ cos

(
πd

rsensor

))
if d < rsensor

Cost function : Jgrii = W
gr .(Ĝt0+Hp − Gt0)
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Area exploration with dynamic target assignment

Navigation cost to exit targets

Time-varying weighting

Useless to move immediately toward the target

Temporal management of priorities may be bene�cial

Assignment is made at the beginning of the mission
Weighting is made by taking into account the remaining time and
the distance to the target
We verify that exit constraints are satis�ed at the end of the mission
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Area exploration with dynamic target assignment

With �xed weighting With dynamic weighting
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Area exploration with dynamic target assignment

Optimal dynamic assignment of the exits:
balance between distance to target and remaining time

Matrix of vehicle/target costs rij = argmin
Ui

Jij

Jij = Control cost + distance + remaining time

Costs are centralised and an optimal assignment of the targets is

performed at each timestep with the Hungarian algorithm
Three cases taken into account (iterative assignments)

One vehicle per target and nc = nv

At most nmax vehicles per target

At least nmin vehicles per target
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Area exploration with dynamic target assignment

Simulation results

expl/dyn. reassign. no/no yes/no yes/yes

Average coverage 21% 45% 58%
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Experimental robotic platforms

Mobile robots

LEGO Mindstorms NXT
E-puck (ICODE funding)
Robotnik Summit XL

Aerial vehicles

Parrot AR Drones
Asctec Pelican
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LEGO Mindstorms NXT mobile robots

Computational capabilities:

ARM 48MHz with ATMega 20MHZ
64kB DRAM and 256 kB memory

NXC language

Bluetooth communication:

1 master and at most 3 slaves
position information shared at
20Hz between 2 robots

2-wheel di�erential structure,
wheel encoders (accuracy ±1◦)
Easy integration of a wide range of
sensors
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Objectives

Many cooperative guidance laws in the literature,
mostly evaluated in simulation

Assess whether cooperative guidance laws and distributed
estimation can be applied on robots with limited computing
capacities

Search for a �exible, low-cost robotic experimental platform
for cooperative guidance → tests on Lego Mindstorms NXT

Demonstration scenario: �eet coordination with
collision/obstacle avoidance
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Search for (sub)optimal cost

Discretization of the space as a set S of candidate control inputs where
the cost Ji is computed and the argument of the smallest is applied

1 The same control input is applied at all control steps on Hc

2 S includes the null and extreme control inputs

3 Increased density around the null control input.

Here, S reduces to, with a varying step γ,

S =
2πγ

ηω
with γ ∈ [1, ηω]
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Experimental results - Lego Mindstorms
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Experimental results - Robotnik XL

Vision-based autonomous exploration and mapping
Embedded optimization using nlopt/DIRECT
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Conclusions and perspectives

Summary

Uni�ed MPC framework for cooperative guidance

Generic cost functions for basic tasks

Many di�erent concepts needed to address realistic problems

Experiment-oriented solutions for optimal input selection

Successful �rst experiments on mobile robots

Perspectives

Take into account delays and reduced inter-vehicle communication

Cooperative localization with distributed vision sensors

Experiments on �eets of aerial vehicles for autonomous environment
mapping and formation �ight
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